|
SIFT
|
Functions | |
| const vigra::MultiArray< 2, f32_t > | convolveWithGauss (const vigra::MultiArray< 2, f32_t > &img, f32_t sigma) |
| const vigra::MultiArray< 2, f32_t > | reduceToNextLevel (const vigra::MultiArray< 2, f32_t > &img, f32_t sigma) |
| const vigra::MultiArray< 2, f32_t > | increaseToNextLevel (const vigra::MultiArray< 2, f32_t > &img, f32_t sigma) |
| const vigra::MultiArray< 2, f32_t > | dog (const vigra::MultiArray< 2, f32_t > &lower, const vigra::MultiArray< 2, f32_t > &higher) |
| const vigra::Matrix< f32_t > | foDerivative (const std::array< vigra::MultiArray< 2, f32_t >, 3 > &img, const Point< u16_t, u16_t > &p) |
| const vigra::Matrix< f32_t > | soDerivative (const std::array< vigra::MultiArray< 2, f32_t >, 3 > &img, const Point< u16_t, u16_t > &p) |
| f32_t | gradientMagnitude (const vigra::MultiArray< 2, f32_t > &img, const Point< u16_t, u16_t > &p) |
| f32_t | gradientOrientation (const vigra::MultiArray< 2, f32_t > &img, const Point< u16_t, u16_t > &p) |
| const std::array< f32_t, 36 > | orientationHistogram36 (const vigra::MultiArray< 2, f32_t > &orientations, const vigra::MultiArray< 2, f32_t > &magnitudes, const vigra::MultiArray< 2, f32_t > ¤t_gauss) |
| const std::vector< f32_t > | orientationHistogram8 (const vigra::MultiArray< 2, f32_t > &orientations, const vigra::MultiArray< 2, f32_t > &magnitudes, const vigra::MultiArray< 2, f32_t > ¤t_gauss) |
| f32_t | vertexParabola (const Point< u16_t, f32_t > &ln, const Point< u16_t, f32_t > &peak, const Point< u16_t, f32_t > &rn) |
| std::array< Point< f32_t, f32_t >, 4 > | rotateShape (const Point< u16_t, u16_t > ¢er, f32_t angle, const u16_t width, const u16_t height) |
| void | normalizeVector (std::vector< f32_t > &vec) |
| const vigra::MultiArray< 2, f32_t > sift::alg::convolveWithGauss | ( | const vigra::MultiArray< 2, f32_t > & | , |
| f32_t | |||
| ) |
Convolves a given image with gaussian with a given sigma
| input | the input image which will be convolved |
| sigma | the standard deviation for the gaussian |
| const vigra::MultiArray< 2, f32_t > sift::alg::dog | ( | const vigra::MultiArray< 2, f32_t > & | , |
| const vigra::MultiArray< 2, f32_t > & | |||
| ) |
Calculates the Difference of Gaussian, which is the differnce between 2 images which were convolved with gaussian under usage of a constant K
| lower | the image which lies lower in an octave |
| higher | the image which lies higher in an octave |
| const vigra::Matrix< f32_t > sift::alg::foDerivative | ( | const std::array< vigra::MultiArray< 2, f32_t >, 3 > & | , |
| const Point< u16_t, u16_t > & | |||
| ) |
Calculates the first order derivative of the image, at the coordinates
| img | the image of which the first derivative is taken. |
| p | the point at which the derivative is taken |
| f32_t sift::alg::gradientMagnitude | ( | const vigra::MultiArray< 2, f32_t > & | , |
| const Point< u16_t, u16_t > & | |||
| ) |
Calculates the gradient magnitude of the given image at the given position
| img | the given img |
| p | the current point |
| f32_t sift::alg::gradientOrientation | ( | const vigra::MultiArray< 2, f32_t > & | , |
| const Point< u16_t, u16_t > & | |||
| ) |
Calculates the gradient orientation of the given image at the given position
| img | the given img |
| p | the current point |
| const vigra::MultiArray< 2, f32_t > sift::alg::increaseToNextLevel | ( | const vigra::MultiArray< 2, f32_t > & | , |
| f32_t | |||
| ) |
Resamples an image by 2
| in | the input image |
| void sift::alg::normalizeVector | ( | std::vector< f32_t > & | ) |
Normalizes a vector
| vec | the vector to be normalized |
| const std::array< f32_t, 36 > sift::alg::orientationHistogram36 | ( | const vigra::MultiArray< 2, f32_t > & | , |
| const vigra::MultiArray< 2, f32_t > & | , | ||
| const vigra::MultiArray< 2, f32_t > & | |||
| ) |
Creates an orientation Histogram of a given img and his corresponding orientations and magnitudes. Places values in bins of size 10. So the resulting histogram has 36 elements.
| orientations | The img of which the histogram is taken from. Needs to be computed by gradient orientations before |
| magnitudes | The img of which the bins of the histogram will be weighted. Need to be precomputed by gradient magnitude |
| img | the given img |
| const std::vector< f32_t > sift::alg::orientationHistogram8 | ( | const vigra::MultiArray< 2, f32_t > & | , |
| const vigra::MultiArray< 2, f32_t > & | , | ||
| const vigra::MultiArray< 2, f32_t > & | |||
| ) |
Creates an orientation Histogram of a given img and his corresponding orientations and magnitudes. Places values in bins of size 45. So the resulting histogram has 8 elements.
| orientations | The img of which the histogram is taken from. Needs to be computed by gradient orientations before |
| magnitudes | The img of which the bins of the histogram will be weighted. Need to be precomputed by gradient magnitude |
| img | the given img |
| const vigra::MultiArray< 2, f32_t > sift::alg::reduceToNextLevel | ( | const vigra::MultiArray< 2, f32_t > & | , |
| f32_t | |||
| ) |
Resamples an image by 0.5
| img | the input image |
| std::array< Point< f32_t, f32_t >, 4 > sift::alg::rotateShape | ( | const Point< u16_t, u16_t > & | , |
| f32_t | , | ||
| const u16_t | , | ||
| const u16_t | |||
| ) |
Rotates a given shape by a given degree clockwise
| center | the center point of the shape |
| angle | by which angle the shape should be rotated |
| width | the width of the shape |
| height | the height of the shape |
| const vigra::Matrix< f32_t > sift::alg::soDerivative | ( | const std::array< vigra::MultiArray< 2, f32_t >, 3 > & | , |
| const Point< u16_t, u16_t > & | |||
| ) |
Calculates the second order derivative of the image, at the coordinates
| img | the image of which the second derivative is taken. |
| p | the point at which the derivative is taken |
| f32_t sift::alg::vertexParabola | ( | const Point< u16_t, f32_t > & | , |
| const Point< u16_t, f32_t > & | , | ||
| const Point< u16_t, f32_t > & | |||
| ) |
Calculates the vertex of a parabola, by taking a max value and its 2 neigbours
| ln | the left neighbor of the peak |
| peak | the peak value |
| rn | the right neighbor of the peak |
1.8.10